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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-24

CAICULATION OF SUPERSONIC FLOW PAST BODIES SUPPORTING
SHOCK WAVES SHAPED LIKE ELLIPTIC CONES

By Benjamin R. Briggs
SUMMARY

Numerical solutions are presented for supersonic perfect-gas flow
past bodies which support shock waves shaped like elliptic cones. The
full inviscid equations of motion are applied. The inverse method of
solution is used, wherein the conditions at the shock wave are prescribed
and the results are in the form of body shapes and surface pressure
distributions. Comparisons are made with existing approximate theories
and with results for circular cones.

INTRODUCTION

In the past most of the attempts to obtain usable solutions for two-
or three-dimensional supersonic flow problems have been of an approximate
nature. Through the use of high-speed electronic computers, however,
solutions have been obtained using the full inviscid equations of motion.
An example is the solution of the problem of a blunt body in a supersonic
slream by numcrical means (see refs. 1 and 2).

The numerical technique employed in references 1 and 2 was to
prescribe the shape of the detached sheck wave, and then to locate the
body by integrating inwardly and finding where a stream function vanished.
It was suggested in reference 2 that the same general numerical methods,
along with the use of a pair of stream functions, might be employed in
solving three-dimensional flow problems. The use of two (or more) stream
functions in three~dimensional flows is discussed in reference 3.

Another problem which has been solved numerically using the full
inviscid equations of motion is the supersonic flow past circular cones
at zero angle of attack (see ref. k). Various approximate methods have
been advanced for finding the flow properties of slightly noncircular
conesg or circular cones at small angle of attack (see, €.8., refs. 5
and 6).

In supersonic flow an entropy layer exists over, noncircular or yawed
conical bodies. The value of entropy must be constant on the body. These
concepts have been utilized in reference 7 to obtain body shape from a



numerical study of the entropy in the flow field behind a yawed circular-
cone shock. In addition to the entropy layer, singularities in the
entropy appear on the conical bodies when the conical body is noncircular
or yawed (see refs. 6 and 8).

In the present paper supersonic conical flow past bodies that support
shock waves shaped like elliptic cones is studied numerically. The tech-
nique of prescribing the shock-wave shape (refs. 1, 2, and 7) is employed.
The full inviscid equations of motion are used, and the problem is formu-
lated in terms of two stream functions.

The author is indebted to Dr. Milton D. Van Dyke who originally posed

the problem reported here and suggested how to use two stream functions in
the analysis.

SYMBOLS

a,b semimajor and semiminor axes of elliptic cross section of
coordinate surfaces of constant 6 (egs. (2b), (3))

ay1,01 semima jor and semiminor axes of elliptic cross section of
coordinate surfaces of constant @ (egs. (2¢), (3))

A,B,C,D functions defined in equations (7)

C1,C2 constants in equations (11b) which specify stream surfaces

f,g stream functions of a three-dimensional flow

F,G specializations of f and g for the present conical-flow
problem

hi,hs,hg coefficients in the metric of the sphero-conal coordinate system

k2 ,k'2 constants in the sphero-conal coordinate transformation
M Mach number
N function defined in equation (33)
hs) pressure referred to gwqwz
r,6,p sphero-conal coordinates
S 2
o’
u,v,w velocities components in the sphero-conal coordinate system

referred to U,




W3 ,Vi,W1
UOO

v

XyYs2

F(X)Y)Z)

28,08

velocities in the directions x,y,z, respectively
free-stream velocity
vector having components w,v,w

Cartesian coordinates

adiabatic exponent

coordinate surface that coincides with the shock wave

increments of 6 and ¢ which define the mesh width in the

numerical calculations

density referred to free-stream value
Subscripts

condition on body surface
nth extrapolation

normsl component (eq. (23))
conditions on the shock wave

differentiation with respect to variubles 1,8, and ¢

X,y,z components of Mach number (eq. (23))

Superscripts

nth extrapolation

differentiation with respect to the variable G, encountered
in the components of grad(p?S) in the directions r,6,@

EXAMINATION OF THE PROBLEM

The technique used here is similar to that employed in references 1

and 2.

Initial flow data are calculated at a shock wave of prescribed

shape, and then the body is found by integrating the equations of motion

inwardly toward the body.

In two-dimensional or axisymmetric flow problems,



a function which represents the integral of the differential equation of
the streamlines exists. This function is the well-known stream function.
In the present three-dimensional analysis an important feature is the use
of two such functions. A discussion of this generalization is given in
reference 3. These two functions are constant on streamlines, and the
intersection of surfaces represented by the functions are the streamlines.
It is natural, then, to think of them as stream functions for the three-
dimensional problem. The body is located where one of these two functions
vanishes. Results of the calculations are body shape and surface pressure.

Following an exposition of the coordinate system, equations of motion,
and initial conditions, a description of the numerical integration process
is given. Several specific calculations are then discussed, including a
comparison with circular-cone computations given in reference 4, and a
comparison with the theory of reference 5 for slightly noncircular cones.
The effect of varying the adiabatic exponent 7y in a flow at very high
Mach number is shown, and the limiting case of ¥ nearly one is compared
with simple Newtonian theory.

The report is concluded with a discussion of the results and a mention
of possible avenues of extension of the present method to include angles
of attack or sideslip, and a closer study of the vorticity layer and
entropy singularities which are known (see refs. 6 and 8) to exist on the
surface of noncircular conical bodies or cones at angles of attack or
sideslip.

THE SPHERO-CONAL COORDINATE SYSTEM

It is an essential requirement in the numerical method to be applied
that the shock wave be a coordinate surface and in this case an elliptic
cone. An orthogonal coordinate system r,9,8 which meets this require-
ment is given in reference 9. This transformation from a Cartesian system

X,y,2 1is
= 3
x = r cos 0 \1-k'®cos3@

sin @ sin @

s

y:

z = r cos @ NJ1-k2cos26

k2 + k'% =1, 0<6< 1, OS¢521{J

The coordinate system represented by equation (1) is called the
sphero-conal system. Observe that for k2 = 1 and k'2 = O this system
reduces to spherical polar coordinates about the x axis, and for k2 = 0
and k'2 = 1 it reduces to a spherical polar set about the =z axis.




The coordinate surfaces of the system represented by equation (1)
are spheres and two sets of elliptic cones, given by the following three
equations.

X2 + y2 + z2 = p2 for fixed r = rq (2a)
2
x2 Y22 - - 2 55 =0, for fixed 6= 6 (2Db)
tan<6 -k=cos
k2cos26
2
X F X 20 ) for fixed @ = @o (2¢)
1-k'2cos2@  tan2¢

k'2cos2(

Portions of the two sets of cones, equations (2b) and (2c¢), are shown in
sketches (a) and (b).

®

Sketch (a).- Constant @ Sketch (b).- Constant @

Points are defined at intersections of the cones and the spheres
r = constant.

The semiminor and semimajor axes of the elliptic cross sections of
the cones are shown in these sketches. In terms of the constants k2,
k'2, 65, and By, these may be written



\
a = l-kzcoszeo
kZ2cos26,
b = tan 6y aZhb
> (3)
k'2cos2@,
ay =
k'%cos2@,
by = tan @, a1 2 le

For the problem at hand it will be assumed that the prescribed shock
wave is a cone of the family represented by equation (2b) (see sketch (a)).
The free-stream flow will be in the direction of the positive x axis.
The shock-wave geometry is fixed by giving constant values to 6 and b/a.
The constants %® and k'? can then be calculated from the relations

2 (v/a)®

sin26, + (b/a)Zcos26,

(%)

klz 1 - k2

In the derivation of the equations of motion in terms of the
orthogonal sphero-conal coordinates, the functions hi,hg,hg, which are
coefficients in the metric, are needed. The metric is given by

ds2

h3dr® + h3d6® + nZag® (5)

for orthogonal systems, and in the present case

1

juyg
H
1]

2 _ 2 kZsin®6 + k'asin?@
1 - k®cos®6 > (6)

n2 = 2 k25in260 + k'Zsin3g
1 - k'Zcos2y

J

In the transformation of the equations of motion into the sphero-conal
coordinates considerable simplification results when the following auxil-
iary functions are introduced:




A2 = 1 - k2cosZ®0 h
k2s5in26 + k'2sin2@
B2 = 1 - k'2cos2g
k2s5in26 + k'Zsin@
C = k2sin 6 cos 0
k2sin26 + k'Zsin2@
(7)
D = k'2sin @ cos @
k2sin20 + k'Zsin2¢
c(1-a2
Q;A: = ——-——-( ) -a—B' = -BC
36 A 36
B_A. = -AD §§ = %(l_BZ)
of op J
Equation (6) can now be written in simpler form by use of rela-
tion (7); that is,
2 _r2 2 _r2
=1, h3 = = hs = = (8)

VELOCITIES IN THE SPHERO-CONAL SYSTEM

Velocity components u,v,w in the
sphero-conal coordinates are defined in z
the following way. The component u 1is
in the direction of the coordinate r.
The velocities v and w are components
along curves of constant @ and 6,
respectively, on a spherical surface
given by constant r. Sketch (c)
illustrates curves of constant
and 6, and the velocity components Vv
and w are shown. It must be borne in
mind that the sketch is a projected
view of the spherical surface onto the
y-z plane, and that the velocity
components v and w do not lie in
the y-z plane, but on a spherical
surface.

Sketeh (c)



The relationship between the velocities u,v,w and the velocity
components uj,Vi,wWi in the Cartesian coordinate system is given by
the equations:

k2c0520) (1-k'Zcos2
uy = (/l—k'2c082¢ cos é) u - (1-k2cos20) (1 cos>) sin 8| v +

k25in26+k'Zsin2@

k'Zsin @ cos @ cos 8

Jk2sin26+k'25in2g

5.5
vy = (sin 6 sin ¢)u_+-<:// 1-k"cos™6 cos 6 sin $) v +
k

. 2 .
25in26+k! “sin2g

R = 2
J/ 1-k Coi 4 sin 6 cos @) w
k251in26+k'“sin2@

25in 0 ]
Wy = <Jl—kzcosge cos é) u + <fk sin 6 cos 6 cos f§ v -

szsin26+k'zsin2¢

sin ¢ W

J/(l—kgcosze)(l—k‘2c082¢)

: 2 .
k25in26+k'“sin2¢

THE EQUATIONS OF MOTION

General Remarks

The differential equations which describe the flow of an ideal perfect
compressible fluid are, in vector form,

div(eV) = 0 (continuity) (9a)
o(V-grad)V + grad p = 0 (momentum) (9v)
V-grad(p/e”) = 0 (energy) (9¢)

Here V is the velocity made dimensionless with respect to its free-stream
value U,. The density p has been made dimensionless with reference to
its gree—stream value Py and pressure p Wwith respect to the quantity
PV *




The Equations of Motion in the Sphero-Conal System

When equations (9) are transformed into the sphero-conal coordinate
system, with the added assumption of conical flow, the results are

lM+}_M+p<AB+.C_V+D_W =0 (lOa)

B 36 A >¥g B A
Av Q8 4 By OU | (y2442) = 0 (10b)
39 6¢
Av O + Bw O _ ACW® + uwv + BDvw + AR = 0 (10¢)
36 3¢ Y
Av OF 4 By OV _ BDv® + uw + ACvw + B 92 = 0 (104)
d6 og P3¢
Avé(—g%QZl+Bwa(—§;g-)-=O (10e)

Here wu, v, and w are velocities in the sphero-conal system, as discussed
previously, and A, B, C, and D are defined in equation (7).

Equations (10) reduce to those for conical flow in ordinary spherical
polar coordinates if values of 1 and O are taken for k2 and k'?, respec-
tively (see, e.g., ref. 6). If the further stipulation of axisymmetric flow
is made, then the velocity w +vanishes and none of the remaining flow
quantities vary with @, and equations (10) reduce to those used in refer-
ence 4 in the direct circular-cone problem.

The Equations of Motion Written in Terms
of Two Stream Functions

It is not convenient to use equations (10) in the numerical computa-
tions, as there is no way to infer the body shape from values of the
velocities u, v, and w, and p and p in the flow field. In reference 3,
three-deminsional flows are described by a method utilizing two functions
which are integrals of the differential equations of the streamlines. One
of these functions can be made to vanish at a solid boundary, such as the
conical body of this analysis. This 1s a generalization of the stream
function of two-dimensional or axisymmetric flows. The theory of refer-
ence 3 will be outlined here briefly.
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Let wi1,vi,w1 be velocity components in the direction of the
Cartesian coordinates x,y,z, respectively. Then the streamlines are
given by the equations

g—'&:ﬂ:% (lla)
4y Vi Wi ’

Now, all of the integrals of these equations are contained in the two
relations

fl(X:Y:Z) ci

(11b)

It

g1(x,y,2) = cz

Stream surfaces are represented by these two equations for fixed values

of the constants c¢3 and cp. The intersections of the stream surfaces

f1 and g3 are streamlines, and it is clear then that f; and g; are

constant on streamlines. The functions f3 and g3 are referred to as

the stream functions for a three-dimensional flow. The velocities in terms -
of the two stream functions are represented by the vector product

oV = (grad £1) x (grad gi) (12) .
The energy equation then takes the simple form p/p7 = S(fl,gl) where S

is related to the entropy of the flow field. The momentum equations can
be written as

>
o(V-grad)V + grad[p?s(f1,e1)] = 0 (13)
and the unknowns are now f3, g3, and p.
The velocities u, v, and w can be found in terms of f and g 1if

equation (12) is transformed into the sphero-conal coordinate system.
Thus,

7
u = ﬁg% (foeg - fyee)

v = p_]i (fger - freg) ) (1)
w = é% (frgg - Tggy) ]

Here f and g are understood to be functions of the coordinates r,9,¢,

and subscripts r, 8, and ¢, indicate partial differentiation with respect .
to the variables r, 6, and ¢, respectively. Observe that the assumption

of conical flow has not been made in equation (14).

The theory summarized in the foregoing paragraphs will now be applied
to the problem at hand. For conical flow V, p, and S are not functions

) o=y
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of the coordinate r. Thus the product fg must be homogeneous of order
2 in r (see eqs. (14)). 1In order that f will reduce to Stokes' stream

function in the axisymmetric case, and also that the body be described
by f = 0, it is convenient to let f be homogeneous of order 2 and g
of order 0 in r. Thus, for conical flow, the transformation

f(r,9,¢) TZF(9:¢)
g(r,9,¢) = G(9:¢)

can be made. Then S(f,g) cannot be independent of r unless it is also
independent of f. Therefore,

s(f,g) = s(G) (16)

(15)

Equation (14) can now be written in terms of F and G.

u = A'bji (FeCg - FgGo) (17a)
v = - 22 rog | (17v)
w = %? FGg (170)

The components of grad[p7S(G)] are

0

A Ve ~
ApO LP9+-U—-G
r K P S e) } (18)

in the r, 6, and § directions. The quantity (V-grad)v in equation (13)
can be written in terms of the component velocities u,v,w, as was done
in the equations of motion, equations (10a), (10b), and (10c). Then, by
use of equations (17) and (18) the equations of motion become:

& momentum:

[707**s-(2BFCg)?] <p—p9>
= (2BF)?(ceogg-GgGge) - (o7778) <%>Ge + 2BPTGg(FgGe-Febg) +

(2F)%ag <D—B2 %9>c¢ + (2F)ZC(BZG§5+A2G§) (19)
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¢ momentum:

(2AF)0yGge = 2A°TOo(FyGo-Fely) +
e D)

(2F)20¢(CG9+32DG¢) + p’*lg (% %? + %; Gé) (20)
r momentum:

(ABG¢)2F99 = (AB)Z[F9G9G¢¢—(F9G¢+F¢G9)G9¢ +
F¢G¢G99—G%F¢¢+2G9G¢Fe¢} - 2F(A2G§+BZG;) -

(F¢G9—F9G¢){B2 (éAZC—C+A? %? 6 - AR (éBZD—D-BZ %?f)GQJ

(21)
THE INITTAT CONDITIONS
The shock wave is taken to be an elliptic cone of the form described

by equation (Eb), and the fixed value of € will be designated 6,. The
equation of this conical surface is

I(x,y,2) =x2 - == - == 0 (22)

The component of free-stream Mach number M, normal to the shock wave
is, in general,

- My (Or /3x ) +My (0T /3y ) +Mg (3T /3z)
J(3T/3x)2+(3r/3y) 2+ (3T /3z) 2

where Mg,My,M; are the components of Mach number in the x, y, and z
directions, respectively. When equation (22) and the condition that
My = M, = O are used equation (23) becomes

(23)

(1-kBcos® 85) (1-k'2cos3p)

k25in26,+k'Zsin2¢

My = Msin 6 (24)
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The pressure, density, and velocity behind the shock wave are

2yMy - (7-1)

P=E— (25&)
(7+1) M2
o = __£fol¥§__ (25b)
(7-1)Mg + 2
_ g e2 (25¢)
(7+1) My,

(see, e.g., ref. 10, egs. (93), (94), and (96)). The velocities u and w
are tangent to the shock, so they undergo no change through the shock.

These velocities are
= cos 6, A - k'Zcos2d (254)

c
!

v = k'2cos 6ysin @ cos @ (25¢)
Vk25in26,+k'2sin2g

There is still some freedom left in the choice of the form of the
stream functions F and G. If it is specified that F be independent
of ¢ at the shock wave the result is that it is a constant there. The
value of this constant is specified, now, by requiring that G reduce
to @ in the axisymmetric case. Using equations (24), (25b), (25¢),
and (7) in equation (l7b) gives

s w12...24
—_— afl-k'2cos2g g
Jk25in260+k'2sin2@

J(1-k2cos26,) (1-k'2cos2@)

= —-sin 64 (26a)
Jk2sin26,+k'2sin2f
Sclving for G¢ results in the equation
in 6 -k2sin=6
G = sin 1 sin=0, (26D)
¢ oF
If F is chosen to be
sin O 1l-k2cos26,
F = 5 2 (27)
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at the shock, then an integration of equation (26b) leads to
G=¢ (28)

at 6 = 65. In a similar manner equations (17a) and (17c) yield

Fe = _____220F (29)
A%tan 6,

Gg = M (30)
APtan 6,

at the shock wave.

Equations for S(G) and S'/S are needed, also. The required
relations are

s(e) = 2 = (r=1) [2 + (7‘1)N2}7 (31)
7 (7+1)M (y+1)W°
s' —hy(y—l)kzk'2c05260(N2—l)2sin G cos G (32)
S [eyN2-(y-1)][2+(7-1)N2](k®5in26,+k'2sin3G) (1-k'2cos2G)
where

2 (c) = M2sin20,(1-k'2cos2G) (1-k2cos26,) (33)

k2sin26, + k'Zsin2G

THE NUMERTCAL TECHNIQUE

The numerical problem is defined by equations (19) through (21),
(25b), and (277) through (33). For a given case, values are specified for
the following items.

6

b?a }»Shock-wave geometry

M, Free-stream Mach number
7 Adiabatic exponent

e

A¢ }»Mesh size
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In practice, 20 points are picked in the region 0 < @ < n/2 on the
shock wave. The starting value of @ is taken as 2.25°, and 2§ is
4,50, Thus, the values of ¢ at which initial data are calculated

are 2.25°%, 6.75°, . . ., 87.75°. The value of A9 1is chosen so that at
least 8 or 10 increments are taken to get to the body.

These computations have been programed for an ElectroData 205
Electronic Data Processing System having the automatic floating point
feature. The program is arranged according to the following outline.

Step 1.- Compute initial values of p, F, G, Fg, and Gy for the
20 prescribed values of ¢ at the shock. Compute derivatives p¢,
Fg> Gg> Fgg» g¢¢, Fgg, and Ggg numerically. Compute s(a), s'/s,
oy, Gpg, and Fgg from equations (31) through (33) and (19) through (21).
Compute pressure using the relation p = p’S. The pertinent flow data,
known now at the shock, are read out of the computer.

Step 2.- Extrapolate p, Fg, and Gg, known here at 6 = 6, to the
next value of 6, where 6y, = 6y - A9, using the formulas

p(n+1) = o(n) - p9 pgn) ]
prt2) _ pln) g 2 ) (34)

- 20 afy)

I

Gén+l) Gén)

Step 3.- Extrapolate F and G to the next smaller value of 0,
namely 0Op44q, using the formulas 3

n) {n+

-

plots) _ pln) _ A

:}gn) .\ ng+1)—

L 2 _

G(n+1) = G(n) -

7

. n+1
Note that an+l) and Gé ), found in step 2, are used in step 3. The

value of 6., 1is now computed by use of the relation 6.3 = 6, - AF.

Step 4.- Compute the derivatives og> Fg, Gg, Fgg, Gg¢, Fogs
and Ggf numerically. Compute S(G), 8'/S, pg, Ggg, and Fgg from
equations (31) through (33) and (19) through ?21). Pressure p is
now found from the relation p = p’S. At this point, for the present
value of 6, pertinent flow-field data for the prescribed 20 values
of ¢ are read out of the computer.

Step D.- If any values of F have become negative for the
current set of data, for which & = 6p4,, then the previously
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calculated set at 6 = 8, 1s recalled and the increment in 8 to
the body from 6, is calculated for each value of @ by use of

the relation
F{0) —N/[Fén) ]2—2F(n)Fég)
o = (n) (36)

Foo

and the coordinates vy and z of the body cross section are found
for x = 1 from the equations

sin @ sin 6y )
p =
cos Bpfl-k'2cos2d
(37)
cos ¢Jl—k2c0526b
Zb =
cos 1-k'2cos2f )
where 6y = 6p - A9,. The pressure p 1is extrapolated to the body
by use of the formula
(n)
b = p(n) _ oy pg (38)

where
(n) (n) ,
n p 1
- p(n)[7 o ) ng>] >

The body coordinates and Py, are now read out of the computer and the
case is findished.

If, on the other hand, all values of F are still positive here,
at 6 = 6p4,, steps 2 through 4 are repeated. The repetition is
carried out until F has changed sign, at which time the extrapola-
tion to the body, as outlined in the foregoing paragraph, is carried
out.

PRESENTATION OF REFULTS
I1lustrative Examples
For illustrative purposes a case was studied for which the shock wave

was definel by 65 = 30° and b/a = 0.6. The free-stream conditions were
M=6and ¥y = 1.4k, In order to assess the effect of the magnitude of the
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A=2TT

L7

increment A9 on the calculations, this example was computed for several
values of AP9. The resulting body shapes (plotted in the x = 1 plane)
and surface pressure distributions are shown in figures 1 and 2, respec-
tively. Note that results are shown only for one-quarter of the body
cross section. Pressures are plotted against the coordinate ¢ (see

egs. (1)). From equations (1) it is seen that where @ = 0° on the body
y = 0, and where @ = 90° is where =z = O. Qualitatively, the body shape
is more regular, particularly in the middle portion, for small values

of A8. The surface pressure distributions for the two smallest incre-
ments are indistinguishable from one another. To show in a somewhat more
quantitative way that the calculations are stable and convergent, the
body coordinate 6, has been plotted against A9 for several fixed
values of @ (see fig. 3). It is evident that by taking smaller and
smaller increments some final body shape is approached.

There is no reason to expect the body shape to be elliptic, in
general. In the case under discussion, the body cross section is compared
with an ellipse, namely the one through the points where y = O and z =0
on the body (see fig. 4). The body is flatter than this ellipse in the
middle portion, a not wholly unexpected result. Note that this is not
a coordinate ellipse.

Another series of calculations was carried out using the same shock-
wave geometry as in the previously discussed examples. The value of ¥
was the same, also, but several values of M, were chosen to study the
effect of Mach number variation on body shape and surface pressure. The
results are as might have been expected, namely, that as Mach number is
increased the distance between the body and shock wave decreases until
eventually the two attain a fixed distance apart. The results of these
computations are shown in figures 5 and 6.

Another series of bodies was computed where the shock wave is given
by 6, = 30°, b/a = 0.6, as before, and for very large Mach number.
Several different values of the adiabatic constant 7y were chosen and
the effect of varying this constant on body shape and surface pressure
was observed (see figs. 7 and 8). Values were taken in the range
1.6667 >y > 1.001. Note that the distance between shock wave and body
decreases until at ¥ = 1.001 body and shock are sensibly coincident.

The pressure distribution calculated by simple Newtonian theory for a
body having the same dimensions as the shock wave of this series is shown
in figure 8. It is to be compared with the pressure on the body found
here for 7y = 1.001. The difference between the two curves is undoubtedly
due to centrifugal effects which cannot be calculated with the Newtonian
theory, but which are included in the so-called Newtonian plus centrifugal
theory. The latter theory is arrived at by taking 7 equal to one along
with infinite Mach number.
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Comparison With an Approximate Theory

In reference 5 an approximate numerical method is presented for
computing supersonic flow past cones without axial symmetry. This method
is most accurate when the bodies are nearly circular cones, and has the
disadvantage that it can only be applied with ease to cases for which
reference 5 presents tabulated coefficients.

To compare the present method with that of reference 5 a tabulated
case was found for which the shock wave was very nearly an elliptic cone.
The body is a simple perturbation of a 250 circular cone in a flow where
M= 3.926, y = 1L.405. The initial shock which produced this body was
given by 6y = 30.990°, b/a = 0.94337. As the starting condition, the
method of reference 5 was applied to the body produced by this calcula-
tion, and the shock-wave position and surface pressures were computed.
The body was closely approximated by the expression

6y = 25 + 1.097 cos 2¢ , degrees (40)
and the shock wave is given by the expression
6 = 31.737 + O.747 cos 28 , degrees (k1)
The surface pressure calculated by the method of reference 5 is
pp, = 0.2396 + 0.0185 cos 2§ (42)

A simple analysis of the surface pressure as calculated by the method of
the present paper shows that it can be put in the form

pp = 0.2486 + 0.0120 cos 28 (43)

The results of these computations are shown in figures 9 and 10. The
angles 6 and $ in equations (L4LO) through (42) are true spherical polar
angles, and they belong to the coordinate system of equations (1) when
k% = 1 and k'2 = 0.

The body and shock-wave comparison is very close. The pressures, on
the other hand, disagree by as much as 6.5 percent. At least a portion
of this difference can be accounted for if one recalls that the problem
is in fact highly nonlinear, and that the method of reference 5 is based
on linearizing assumptions.

A Limiting Case

When the value of b/a is taken to be unity, the shock wave and
resulting body are circular cones. A calculation was made for such a
case using 6p = 28.589°, M = 8.096, and y = 1.405, and using several

1.0 vy
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different values for AM8. The results are shown in the table below.
This same case has been tabulated in reference 4, and for purposes of
comparison the reference U4 results are also given in the table. Note
that the results of the two methods of computation are nearly identical
for the smaller values of A8.

20 =101 A0 =0.5°100=0.25°] 9 =0.125° | Ref. L

po/ b, | L4601 L. 4681 L. L4681 L.46e81 L. 4682
po/p°° 17.367 17.367 17.367 17.367 17.369
py/po | 1.08L7| 1.0764 1.0718 1.0696 1.0673
pb/p°o 1.059% 1.0538 1.0507 1.0489 1,047k
6, |25.028°| 25.014° 25.007° 25.004° | 25.000°

DISCUSSION OF RESULTS

In the foregoing section the effect on body shape and surface pressure
due to changing the size of the increment A9 was studied. It was found
that the numerical process is convergent in the cases studied. No numer-
ical difficulties were encountered in obtaining these results. The same
computing program could not be used for cases where the resulting body was
markedly different from a coordinate cone. Such situations arise when the
ratio b/a at the shock is smaller than about 0.5, or for Mach numbers
smaller than aboul 4. In thc latter case, if the ratio b/a at the
shock wave is not too far from unity, then the low Mach number cases can
be computed with no difficulty. There are apparently two factors which
contribute to these problems. One is the inability to come sufficiently
close to the body over the full range O < @ < 90° in such cases, and the
other is the more involved matter associated with the entropy layer and
singularities on the surface of the body.

Extensions of this work would clearly involve modifying the computing
process to minimize the difficulties discussed in the foregoing paragraph.
Changes to include angles of attack might also be included. It is likely
that considerable information relative to the entropy layer and singulari-
ties on the body could be obtained from examination of the region near the
body more closely than is possible with the present procedure.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Apr. 20, 1959



20

Van Dyke,

Extension.
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Figure 1.- The effect of mesh size on body shape for a typical case.
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